???global.info.a_carregar???
Identificação

Identificação pessoal

Nome completo
Ramin Rahmani

Nomes de citação

  • Rahmani, Ramin

Identificadores de autor

Ciência ID
591D-C189-46F1
ORCID iD
0000-0002-4145-3298

Endereços de correio eletrónico

  • ramin.rahmaniahranjani@gmail.com (Profissional)

Websites

Domínios de atuação

  • Ciências da Engenharia e Tecnologias - Engenharia Mecânica

Idiomas

Idioma Conversação Leitura Escrita Compreensão Peer-review
Persa Utilizador proficiente (C2) Utilizador proficiente (C2) Utilizador proficiente (C2) Utilizador proficiente (C2)
Inglês Utilizador proficiente (C1) Utilizador proficiente (C1) Utilizador proficiente (C1) Utilizador proficiente (C1)
Português Utilizador elementar (A1) Utilizador elementar (A1) Utilizador elementar (A1) Utilizador elementar (A1)
Alemão Utilizador elementar (A2) Utilizador elementar (A2) Utilizador elementar (A2) Utilizador elementar (A2)
Formação
Grau Classificação
2016/09/01 - 2020/08/27
Concluído
Tallinn University of Technology (Doktor (PhD))
Especialização em Mechanical Engineering
Tallinna Tehnikaülikool, Estónia
Additive Manufacturing & Powder Metallurgy
Percurso profissional

Ciência

Categoria Profissional
Instituição de acolhimento
Empregador
2022/11/22 - Atual Investigador (Investigação) Centro de Tecnologia e Inovação Industrial, Portugal
2022/11/22 - Atual Investigador (Investigação) Instituto Politécnico de Viana do Castelo, Portugal
Produções

Publicações

Artigo em revista
  1. Ramin Rahmani; Sérgio Ivan Lopes; Konda Gokuldoss Prashanth. "Selective Laser Melting and Spark Plasma Sintering: A Perspective on Functional Biomaterials". Journal of Functional Biomaterials (2023): https://doi.org/10.3390/jfb14100521.
    10.3390/jfb14100521
  2. Ramin Rahmani; Javad Karimi; Nikhil Kamboj; Rahul Kumar; Miha Brojan; Adam Tchórz; Grzegorz Skrabalak; Sérgio Ivan Lopes. "Fabrication of localized diamond-filled copper structures via selective laser melting and spark plasma sintering". Diamond and Related Materials 136 (2023): 109916-109916. http://dx.doi.org/10.1016/j.diamond.2023.109916.
    10.1016/j.diamond.2023.109916
  3. Ramin Rahmani; Javad Karimi; Pedro Miguel Rebelo Resende; JCC Abrantes; Sérgio Ivan Lopes. "Overview of Selective Laser Melting for Industry 5.0: Toward Customizable, Sustainable, and Human-Centric Technologies". Machines 11 5 (2023): 522-522. http://dx.doi.org/10.3390/machines11050522.
    10.3390/machines11050522
  4. Ramin Rahmani. "Selective laser melting of in-situ CoCrFeMnNi high entropy alloy: Effect of remelting". Journal of Manufacturing Processes 84 (2022): 55-63. http://dx.doi.org/10.1016/j.jmapro.2022.09.056.
    10.1016/j.jmapro.2022.09.056
  5. Ramin Rahmani; Nikhil Kamboj; Miha Brojan; Maksim Antonov; Konda Gokuldoss Prashanth. "Hybrid metal-ceramic biomaterials fabricated through powder bed fusion and powder metallurgy for improved impact resistance of craniofacial implants". Materialia (2022): https://doi.org/10.1016/j.mtla.2022.101465.
    10.1016/j.mtla.2022.101465
  6. "Solid Lubrication at High-Temperatures—A Review". Materials 15 5 (2022): 1695-1695. http://dx.doi.org/10.3390/ma15051695.
    10.3390/ma15051695
  7. "High virucidal potential of novel ceramic–metal composites fabricated via hybrid selective laser melting and spark plasma sintering routes". The International Journal of Advanced Manufacturing Technology (2022): http://dx.doi.org/10.1007/s00170-022-08878-x.
    10.1007/s00170-022-08878-x
  8. "Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfaces". Viruses 14 2 (2022): 204-204. http://dx.doi.org/10.3390/v14020204.
    10.3390/v14020204
  9. "Tribological and circular economy aspects of polypropylene/cotton fibre hybrid composite". Proceedings of the Estonian Academy of Sciences 71 2 (2022): 186-186. http://dx.doi.org/10.3176/proc.2022.2.03.
    10.3176/proc.2022.2.03
  10. "The Impact Resistance of Highly Densified Metal Alloys Manufactured from Gas-Atomized Pre-Alloyed Powders". Coatings 11 2 (2021): 216-216. http://dx.doi.org/10.3390/coatings11020216.
    10.3390/coatings11020216
  11. "Lightweight 3D printed Ti6Al4V-AlSi10Mg hybrid composite for impact resistance and armor piercing shielding". Journal of Materials Research and Technology 9 6 (2020): 13842-13854. http://dx.doi.org/10.1016/j.jmrt.2020.09.108.
    10.1016/j.jmrt.2020.09.108
  12. "Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering". Materials Science and Engineering: C 116 (2020): 111223-111223. http://dx.doi.org/10.1016/j.msec.2020.111223.
    10.1016/j.msec.2020.111223
  13. "Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance". International Journal of Refractory Metals and Hard Materials 88 (2020): 105192-105192. http://dx.doi.org/10.1016/j.ijrmhm.2020.105192.
    10.1016/j.ijrmhm.2020.105192
  14. "Effect of lattice surface treatment on performance of hardmetal - titanium interpenetrating phase composites". International Journal of Refractory Metals and Hard Materials 86 (2020): 105087-105087. http://dx.doi.org/10.1016/j.ijrmhm.2019.105087.
    10.1016/j.ijrmhm.2019.105087
  15. "Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applications". Applied Sciences 9 18 (2019): 3844-3844. http://dx.doi.org/10.3390/app9183844.
    10.3390/app9183844
  16. "Axial and torsional buckling analysis of single- and multi-walled carbon nanotubes: finite element comparison between armchair and zigzag types". SN Applied Sciences 1 9 (2019): http://dx.doi.org/10.1007/s42452-019-1190-0.
    10.1007/s42452-019-1190-0
  17. "Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniques". Metals 9 8 (2019): 874-874. http://dx.doi.org/10.3390/met9080874.
    10.3390/met9080874
  18. "Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Study". Advances in Materials Science and Engineering 2019 (2019): 1-11. http://dx.doi.org/10.1155/2019/4210762.
    10.1155/2019/4210762
  19. "Wear Resistance of (Diamond-Ni)-Ti6Al4V Gradient Materials Prepared by Combined Selective Laser Melting and Spark Plasma Sintering Techniques". Advances in Tribology 2019 (2019): 1-12. http://dx.doi.org/10.1155/2019/5415897.
    10.1155/2019/5415897
  20. "Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin". Proceedings of the Estonian Academy of Sciences 68 2 (2019): 185-185. http://dx.doi.org/10.3176/proc.2019.2.10.
    10.3176/proc.2019.2.10
  21. "Modelling of impact-abrasive wear of ceramic, metallic, and composite materials". Proceedings of the Estonian Academy of Sciences 68 2 (2019): 191-191. http://dx.doi.org/10.3176/proc.2019.2.11.
    10.3176/proc.2019.2.11
  22. "Elastic buckling analysis of single-walled carbon nanotube under combined loading by using the ANSYS software". Physica E: Low-dimensional Systems and Nanostructures 40 7 (2008): 2390-2395. http://dx.doi.org/10.1016/j.physe.2007.11.011.
    10.1016/j.physe.2007.11.011
  23. "Buckling analysis of multi-walled carbon nanotubes under combined loading considering the effect of small length scale". Journal of Mechanical Science and Technology 22 3 (2008): 429-439. http://dx.doi.org/10.1007/s12206-007-1045-2.
    10.1007/s12206-007-1045-2