???global.info.a_carregar???
Concluí o doutoramento em matemática pela PUC-Rio em 2025 na área de sistemas dinâmicos e teoria ergódica. Minha pesquisa é relacionada à teoria de regularidade e propriedades estatísticas dos expoentes de Lyapunov de cociclos lineares aleatórios.
Identificação

Identificação pessoal

Nome completo
Marcelo Durães Capeleiro Pinto

Nomes de citação

  • Durães, Marcelo

Identificadores de autor

Ciência ID
4C1C-38C3-ED55
ORCID iD
0000-0003-3425-8491

Domínios de atuação

  • Ciências Exatas - Matemática

Idiomas

Idioma Conversação Leitura Escrita Compreensão Peer-review
Português (Idioma materno)
Inglês
Espanhol; Castelhano
Francês
Formação
Grau Classificação
2025/09 - 2026
Em curso
Matemática (Pós-doutoramento)
Especialização em Sistemas Dinâmicos e Teoria Ergódica
Universidade de Lisboa Faculdade de Ciências, Portugal
2021 - 2025/04/15
Concluído
Matemática (Doctor)
Especialização em Sistemas Dinâmicos e Teoria Ergódica
Pontifícia Universidade Católica do Rio de Janeiro, Brasil
" Lyapunov Exponents of Random Linear Cocycles: Regularity and Statistical Properties" (TESE/DISSERTAÇÃO)
2019 - 2021
Concluído
Matemática (Master)
Especialização em Sistemas Dinâmicos e Teoria Ergódica
Pontifícia Universidade Católica do Rio de Janeiro, Brasil
"Hölder continuity for Lyapunov exponents of random linear cocycles" (TESE/DISSERTAÇÃO)
2014 - 2018
Concluído
Matemática (Bachelor)
Pontifícia Universidade Católica do Rio de Janeiro, Brasil
Produções

Outros

Outra produção
  1. Analyticity of the Lyapunov exponents of random products of matrices. This paper is concerned with the study of random (Bernoulli and Markovian) product of matrices on a compact space of symbols. We establish the analyticity of the maximal Lyapunov exponent as a function of the transition probabilities, thus extending the results and methods of Y. Peres from a finite to an infinite (but compact) space of symbols.. 2025. Durães, Marcelo; Melo, Aline; Amorim, Artur. https://arxiv.org/abs/2501.19286.
  2. Random 2D linear cocycles I: dichotomic behavior. In this paper we establish a Bochi-Mañé type dichotomy in the space of two dimensional, nonnegative determinant matrix valued, locally constant linear cocycles over a Bernoulli or Markov shift. Moreover, we prove that Lebesgue almost every such cocycle has finite first Lyapunov exponent, which then implies a break in the regularity of the Lyapunov exponent, from analyticity to discontinuity.. 2025. Durães, Marcelo; Klein, Silvius; Duarte, Pedro; Graxinha, Tomé. https://arxiv.org/abs/2503.21050.
  3. Random 2D linear cocycles II: statistical properties. Consider two dimensional random linear cocycles over a shift in finitely many symbols, with at least one singular and one invertible matrix. We provide an explicit formula for the unique stationary measure associated to such cocycles and establish a Furstenberg-type formula. We prove that Lebesgue almost every cocycle in this space satisfies large deviations estimates and a central limit theorem.. 2025. Durães, Marcelo; Klein, Silvius; Duarte, Pedro; Graxinha, Tomé. https://arxiv.org/abs/2505.00146.
  4. Hölder continuity of the Lyapunov exponent for Markov cocycles via Furstenberg's Formula. This paper is concerned with the study of linear cocycles over uniformly ergodic Markov shifts on a compact space of symbols. We establish the joint Hölder continuity of the maximal Lyapunov exponent as a function of the cocycle and the transition kernel in the vicinity of any irreducible cocycle with simple maximal Lyapunov exponent.. 2022. Durães, Marcelo; Melo, Aline; Klein, Silvius; Cai, Ao. https://arxiv.org/abs/2212.00174.