???global.info.a_carregar???
Identificação

Identificação pessoal

Nome completo
Áurea Maria Casinhas Quintino

Nomes de citação

  • Quintino, Áurea
  • Á. C. Quintino
  • Áurea C. Quintino
  • A. C. Quintino
  • Áurea Casinhas Quintino

Identificadores de autor

Ciência ID
1711-1987-99E3
ORCID iD
0000-0002-7176-4265
Produções

Publicações

Artigo em revista
  1. A. C. Quintino; S. D. Santos. "Polynomial Conserved Quantities for Constrained Willmore Surfaces". Asian Journal of Mathematics (2024):
    Aceite para publicação
  2. Burstall, F.E.; Quintino, A.C.. "Dressing transformations of constrained Willmore surfaces". Communications in Analysis and Geometry 22 3 (2014): 469-518. http://www.scopus.com/inward/record.url?eid=2-s2.0-84904471194&partnerID=MN8TOARS.
    10.4310/CAG.2014.v22.n3.a4
  3. Burstall, F.E.; Dorfmeister, J.F.; Leschke, K.; Quintino, A.C.. "Darboux transforms and simple factor dressing of constant mean curvature surfaces". Manuscripta Mathematica 140 1-2 (2013): 213-236. http://www.scopus.com/inward/record.url?eid=2-s2.0-84871999925&partnerID=MN8TOARS.
    10.1007/s00229-012-0537-2
  4. Quintino, A.. "Spectral deformation and Bäcklund transformation of constrained Willmore surfaces". Differential Geometry and its Application 29 SUPPL. 1 (2011): http://www.scopus.com/inward/record.url?eid=2-s2.0-79960612320&partnerID=MN8TOARS.
    10.1016/j.difgeo.2011.04.051
Capítulo de livro
  1. "Minimal Surfaces Under Constrained Willmore Transformation". 229-245. Springer International Publishing, 2021.
    10.1007/978-3-030-68541-6_13
  2. Quintino, Áurea. "Transformations of generalized harmonic bundles and constrained Willmore surfaces". In Willmore Energy and Willmore Conjecture, 9-47. Boca Raton, Estados Unidos: CRC Press, Taylor & Francis group, Chapman & Hall, 2018.
    Publicado
  3. "Constant Mean Curvature Surfaces at the Intersection of Integrable Geometries". 2011.
    doi:10.7546/giq-12-2011-305-319
Livro
  1. Constrained Willmore Surfaces: Symmetries of a Moebius Invariant Integrable System. 2021.