???global.info.a_carregar???
Joana Manuela Capela Pires. Publicou 3 artigos em revistas especializadas e 4 capítulo(s) de livros. Fez 9 comunicações orais em congressos internacionais. Foi investigadora como membro integrado do Instituto de Ciências Agrárias Ambientais Mediterrânicas/ Universidade de Évora desde 2012. Entre 2018 e 2019 exerceu funções como investigadora responsável de nanopartículas na empresa BRinova-Bioquímica. No seu currículo Ciência Vitae os termos mais frequentes na contextualização da produção científica, tecnológica e artístico-cultural são: Nanoparticles; Yeast; Aerobic fermentation; Antioxidants; oxidative stress; nanopartículas de dióxido de titânio; pentóxido de vanádio; maçã golden; glutathione; ROS; MDA contents; TiO2-NP; energy metabolism; respiratory metabolism; cell viability; nanomaterials; temperature; Catalase; cell damages; respiratory/ fermentative; ALP; CAT T; DPPH; TiO2-NPs; silver nanoparticles; heat-shock; glucose-6-P dehydrogenase; cell proliferation;
Identification

Personal identification

Full name
Joana Manuela Capela Pires

Citation names

  • Pires, Joana
  • Capela-Pires, J.
  • Capela-Pires J

Author identifiers

Ciência ID
9C1F-8A26-BE9A

Telephones

Mobile phone
  • 964206488 (Personal)

Languages

Language Speaking Reading Writing Listening Peer-review
Portuguese (Mother tongue)
English Intermediate (B1) Intermediate (B1) Intermediate (B1) Intermediate (B1) Intermediate (B1)
Spanish; Castilian Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2)
French Proficiency (C2) Upper intermediate (B2) Proficiency (C2) Upper intermediate (B2) Upper intermediate (B2)
Education
Degree Classification
2011/09/01 - 2017/04/22
Concluded
Bioquímica (Doutoramento)
Universidade de Évora Escola de Ciências e Tecnologia, Portugal

Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal
"Efeito Crabtree em Saccharomyces cerevisiae e sua modelação por nanopartículas de dióxido de tinânio." (THESIS/DISSERTATION)
Aprovado com louvor e distinção
2009/09/01 - 2011/06/30
Concluded
Bioquímica (Mestrado)
Universidade de Évora Centro de Investigação em Ciências e Tecnologias da Saúde, Portugal
"Influência da temperatura na proliferação de Saccharomyces cerevisiae em presença de nanopartículas de dióxido de titânio" (THESIS/DISSERTATION)
18
2005/09/01 - 2009/06/01
Concluded
Bioquímica (Licenciatura)
Universidade de Évora Centro de Investigação em Ciências e Tecnologias da Saúde, Portugal
" Nanopartículas de dióxido de titânio pró-oxidante indutor de morte celular em Saccharomyces cerevisiae UE-ME3" (THESIS/DISSERTATION)
13
Affiliation

Science

Category
Host institution
Employer
2012/01/01 - Current Researcher (Research) Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal
Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal
2018/10/01 - 2019/10/01 Principal Investigator (Research) BRinova-Bioquímica, Portugal
BRinova-Bioquímica, Portugal
2018/10/01 - 2019/10/01 Researcher (Research) BRinova-Bioquímica, Portugal
2009/01/01 - 2012/01/01 Research Trainee (Research) Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal
Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal

Other Careers

Category
Host institution
Employer
2021/01/11 - Current Técnico Superior (Técnico Superior) Parque do Alentejo de Ciência e Tecnologia, Portugal
Parque do Alentejo de Ciência e Tecnologia, Portugal
Outputs

Publications

Book chapter
  1. Capela-Pires, J.. "Saccharomyces cerevisiae exposed to titanium dioxide nanoparticles of less than 100 nm in size under heat shock partially reverted glucose-mediated repression of the citrate cycle". In Global progress in applied microbiology: a multidisciplinary approach. badajoz, Spain: A. Méndez-Vilas, 2018.
    Published
  2. Capela-Pires, J.; Méndez-Vilas, A.. "Aerobic fermentation of Saccharomyces cerevisiae may be reversed by exposure to titanium dioxide nanoparticles under heat shock". In Exploring Microorganisms: Recent Advances in Applied Microbiology. Florida, United States: Boca Raton, 2018.
    Published
  3. Méndez-Vilas, A. "Growth and antioxidant responses of Saccharomyces cerevisiae BY4741 exposed to titanium dioxide nanoparticles under heat-shock conditions". Wageningen Academic Publishers, 2014.
  4. Capela-Pires, J.. "Growth temperature determines titanium dioxide nanoparticles response by Saccharomyces cerevisiae UE-ME3". In : Microbes in Applied Research: Current Advances and Challenges. Mendez-Vilas A, 2012.
    Published
Conference abstract
  1. Capela-Pires, J.. "Assessing Social Sustainable Business Models". Paper presented in Regional Helix '21 International Conference on Territorial Dimensions of Green and Digital Transitions, Lamego, 2021.
Journal article
  1. Capela-Pires, J; Ferreira, R; Alves-Pereira, I. "Titanium dioxide nanoparticles under heat-shock negatively modulate the Crabtree effect in Saccharomyces cerevisiae.". (2018): http://hdl.handle.net/10174/23937.
  2. Capela-Pires, Joana; Candeias, Marta; Alves-Pereira, Isabel; Ferreia, Rui. "A bioquímica e a qualidade da carne para consumo – uma aproximação experimental para alunos do 1.º ano de medicina veterinária". (2016): https://revistas.rcaap.pt/interaccoes/article/view/8765.
  3. Capela-Pires, J; Ferreira, R; Alves-Pereira, I. "Heat shock and titanium dioxide nanoparticles decrease superoxide dismutase and glutathione enzymes activities in Saccharomyces cerevisiae.". (2015): http://www.degruyter.com/view/j/gps.2015.4.issue-3/gps-2015-0007/gps-2015-0007.xml.
  4. Capela-Pires, J; Alves-Pereira, I; Ferreira, R. "Early exposure to titanium dioxide nanoparticles caused a decrease in the cytoplasmic catalase activity, inducing lipid peroxidation in the Saccharomyces cerevisae.". (2015): http://www.sciencedirect.com/science/article/pii/S0378427415025473.
  5. Capela-Pires, J; Alves-Pereira, I; Ferreira, R. "Heat-shock and titanium dioxide nanoparticles decrease SOD and glutathione enzymes activities in Saccharomyces cerevisiae". (2014): http://hdl.handle.net/10174/13216.
  6. Capela-Pires, J; Ferreira, Rui; Alves-Pereira, Isabel. "Differential survival of Saccharomyces cerevisiae UE-ME3 and BY4741 strains to titanium dioxide nanoparticles depend on glutathione level increase and Catalase T induction.". (2012): http://hdl.handle.net/10174/7837.
  7. Capela-Pires, J; Ferreira, Rui; Alves-Pereira, I. "Differential growth inhibition of Saccharomyces cerevisiae UE-ME3 and BY4741 by titanium dioxide nanoparticles in heat-shock conditions depends on glutathione reductase activity.". (2012): http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.08705.x/abstract.
    http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2010.08705.x/abstract
  8. Agostinho, J; Capela-Pires, J; Ferreira, R; Alves-Pereira, I. "Proliferação de Saccharomyces cerevisiae na presença de metais de transição". (2011): http://www.box.com/shared/yx9u9xamgb.
  9. Capela-Pires, J; Alves-Pereira, I; Ferreira, R. "Influence of temperature on Saccharomyces cerevisiae UE-ME3 response to titanium dioxide nanoparticles". (2011): http://www.formatex.info/biomicroworld2011/acceptedabstracts.php.
  10. Capela-Pires, JM; Alves-Pereira, I; Ferreira, Rui. "Heat shock decrease Saccharomyces cerevisiae UE-ME3 survival exposed to nanoparticles of titanium dioxide.". (2011): http://hdl.handle.net/10174/4149.
  11. Capela-Pires, JM; Alves-Pereira, I; Ferreira, Rui. "Glucose-6-phosphate dehydrogenase of Saccharomyces cervisiae decreased in presence of titanium dioxide nanoparticles after heat-shock treatment". (2011): http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2011.08137.x/abstract.
    http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2011.08137.x/abstract
  12. Capela-Pires, J; Alves-Pereira, I; Ferreira, R. "NP-TiO2-Inibidor do crescimento de Saccharomyces cerevisiae UE-ME3.". (2010): http://hdl.handle.net/10174/6206.
  13. Capela-Pires, J; Ferreira, R; Alves-Pereira, I. "Antioxidant response to titanium dioxide nanoparticles by Saccharomyces cerevisiae grown in different carbon sources and heat-shock conditions". (2004): http://onlinelibrary.wiley.com/doi/10.1111/febs.12919/pdf.
    http://onlinelibrary.wiley.com/doi/10.1111/febs.12919/pdf
Thesis / Dissertation
  1. Pires, Joana Manuela Capela. "Efeito Crabtree em Saccharomyces cerevisiae e sua modulação por nanopartículas de dióxido de titânio". PhD, 2017. http://hdl.handle.net/10174/21042.
  2. Pires, Joana Manuela Capela. "Influência da temperatura na proliferação de Saccharomyces cerevisiae em presença de nanopartículas de dióxido de titânio". Master, 2011. http://hdl.handle.net/10174/11738.

Other

Other output
  1. Synthesis and characterization of carboxymethyl chitosan hydrogel: potential use for protein drug delivery. painel: 2019- Filho C, Silva M, Capela-Pires J, Campos-Gonçalves I, Craveiro A 2019. Synthesis and characterization of carboxymethyl chitosan hydrogel: potential use for protein drug delivery. 7th international conference on biodegradable and biobased polymers. Stockholm, Sweden.. 2019. Capela-Pires, J..
  2. Biological activity of chitosan/pectin-based hydrogel: green alternative for infected wounds. 7th international conference on biodegradable and biobased polymers. painel: 2019- Silva M, Capela-Pires J, CamposGonçalves I, Bueno P, Matsushita A, Rubira A, Muniz E., Durães L, Murtinho D, Filho C, Valente A, Craveiro A, 2019. Biological activity of chitosan/pectin-based hydrogel: green alternative for infected wounds. 7th international conference on biodegradable and biobased polymers. Stockholm. Sweden. 2019. Capela-Pires, J..
  3. Titanium dioxide nanoparticles under heat-shock negatively modulate the Crabtree effect in Saccharomyces cerevisiae. 4th International. Comunicação oral-2018-Capela-Pires J, Ferreira R, Alves-Pereira I (2018) Titanium dioxide nanoparticles under heat-shock negatively modulate the Crabtree effect in Saccharomyces cerevisiae. 4th International Conference on Green Chemistry and Sustainable Engineering (GreenChem-18) 23-25 July 2018 Madrid, Spain, EU (AbstractsBook - ISBN 978-84-09-03323-2) http://hdl.handle.net/10174/23. 2018. Capela-Pires, J.. http://hdl.handle.net/10174/23937.
  4. Titanium dioxide nanoparticles < 25 nm under heat-shock prevent Crabtree effect in Saccharomyces cerevisiae. painel: 2018- Capela-Pires, Joana, Ferreira, Rui and Alves-Pereira, Isabel (2018) Titanium dioxide nanoparticles < 25 nm under heat-shock prevent Crabtree effect in Saccharomyces cerevisiae. ESCPB2018 31st Congress, Porto, Portugal, UE. 2018. Capela-Pires, J..
  5. Glucose-dependent repression of citrate cycle in Saccharomyces cerevisiae was partially reverted by titanium dioxide nanoparticles exposure in heat-shock conditions. painel:2018- Capela-Pires, Joana, Ferreira, Rui and Alves-Pereira, Isabel (2018) Glucose-dependent repression of citrate cycle in Saccharomyces cerevisiae was partially reverted by titanium dioxide nanoparticles exposure in heat-shock conditions, Biomicroworld2018, Torremolinos, Espanha (virtual). 2018. Capela-Pires, J..
  6. Exposure to titanium dioxide nanoparticles in heat-shock conditions reverses glucose-induced fermentation of Saccharomyces cerevisiae. The consume of glucose by alcoholic fermentation in Saccharomyces cerevisiae involves a step of decarboxylation of pyruvate to acetaldehyde, catalysed by the enzyme pyruvate decarboxylase (PDC) that is followed by the reduction of acetaldehyde to ethanol by the enzyme alcohol dehydrogenase (ADH). In general S. cerevisiae uses the aerobic alcoholic fermentation to oxidize NADH in NAD+, generated by. 2017. Capela-Pires, J; Ferreira, R; Alves-Pereira, I. http://hdl.handle.net/10174/22068.
  7. Exposure to titanium dioxide nanoparticles in heat-shock conditions reverses glucose-induced fermentation of Saccharomyces cerevisiae. painel:2017-Joana Capela-Pires, Rui Ferreira and Isabel Alves-Pereira (2017) Exposure to titanium dioxide nanoparticles in heat-shock conditions reverses glucose-induced fermentation of Saccharomyces cerevisiae , Biomicroworld 2017, Madrid, Espanha. 2017. Capela-Pires, J..
  8. Antioxidant response to titanium dioxide nanoparticles by Saccharomyces cerevisiae grown in different carbon sources and heat-shock conditions. painel:2014-Capela-Pires J, Ferreira R, Alves-Pereira I (2014) Antioxidant response to titanium dioxide nanoparticles by Saccharomyces cerevisiae grown in different carbon sources and heat-shock conditions, FEBS-EMBO 2014, Paris, França, FEBS Journal 281Suppl.1:549. (DOI:10.1111/febs.12919).. 2017. Capela-Pires, J..
  9. A bioquímica e a qualidade da carne para consumo – uma aproximação experimental para alunos do 1º Ano de Medicina Veterinária.. A oxidação de lípidos constitui a principal causa de degradação da carne, levando à perda do seu valor nutritivo. A quantidade intramuscular de agentes oxidantes é finamente regulada por agentes redutores endógenos como o ascorbato ou catalases que decrescem rapidamente durante a conversão do músculo em carne. Assim, os níveis de catalase ou o conteúdo lipídico podem ser bons indicadores da qualid. 2015. Capela-Pires, J; Candeias, M; Alves-Pereira, I; Ferreira, R. http://revistas.rcaap.pt/interaccoes/article/view/8765.
  10. Antioxidant response to titanium dioxide nanoparticles by Saccharomyces cerevisiae grown in different carbon sources and heat-shock conditions. DOI:10.1111/febs.12919. 2014. Capela-Pires, J.. http://hdl.handle.net/10174/13376.
  11. Heat-shock and titanium dioxide nanoparticles decrease SOD and glutathione enzymes activities in Saccharomyces cerevisiae. comunicação oral 2014-Capela-Pires J., Alves-Pereira I., Ferreira R. (2014) Heat-shock and titanium dioxide nanoparticles decrease SOD and glutathione enzymes activities in Saccharomyces cerevisiae , Abstract Book of International Conference on Green Chemistry and Sustainable Engineering, Instituto Politécnico de Portalegre, Portugal, Barcelona. (ISBN 978-989-95089-4-1).. 2014. Capela-Pires, J.. http://hdl.handle.net/10174/13216.
  12. Nanopartículas de dióxido de titânio revertem a repressao catabólica pela glicose dos enzimas málico e malato desidrogenase em Saccharomyces cerevisiae UE-ME3?. A nanotecnologia liberta para o ambiente materiais com dimensão entre 1 e 100 nm, cujas propriedades magnéticas e termodinâmicas, maioritariamente condicionadas pela área superficial/dimensão molecular, determinam o tipo de interacção que estabelecem com as biomoléculas. A caracterização dos efeitos biológicos das nanopartículas constitui assim um tema de investigação aliciante em toxicologia bioq. 2013. Capela-Pires, J; Ferreira, Rui; Alves-Pereira, Isabel. http://hdl.handle.net/10174/10160.
  13. How does heat-shock affect the influence of titanium dioxide nanoparticles in growth and antioxidant power of Saccharomyces cerevisiae BY4741?. Nanomaterials include all substances that contain nanoscale structures sized between 1 and 100 nm. At this size, the characteristics of materials change: their strength, conductivity, and reactivity, which differ substantially from macro- or micron- sized materials, shifting the rules of physics and chemistry to the sidelines. Although, the geological origin and the ubiquitous occurrence of nanopa. 2013. Capela-Pires, J; Ferreira, Rui; Alves-Pereira, Isabel. http://hdl.handle.net/10174/9934.
  14. Nanopartículas de dióxido de titânio ativam vias de desintoxicação celular citoplasmáticas de Saccharomyces cerevisiae UE-ME3. A origem geológica e a ocorrência ubíqua das nanopartículas (NPs) podem levar a supor uma boa adaptação filogenética dos seres vivos a este tipo de substâncias. Contudo, o desenvolvimento industrial, associado a novas e vastas aplicações dos nanomateriais, tem contribuido para elevar os seus níveis ambientais [1]. Por esse motivo, a preocupação com a pressão ambiental das nanopartículas em determi. 2013. Capela-Pires, J. http://hdl.handle.net/10174/10159.
  15. Nanoparticles of titanium dioxide modulate the response to temperature by key enzymes involved in pyruvate availability in cytosol and mitochondria of Saccharomyces cerevisiae BY4741, CICTA 2013. Nanotechnology can be used to obtain materials at nanoscale (<100 nm) with new physicochemical and structural properties which depend on particle size and, probably, may trigger new biological effects. As Saccharomyces cerevisiae is an excellent model for study molecular and cell biology responses is growingly used in the toxicological evaluation of chemicals, such as heavy metals or nanoparticles. 2013. Capela-Pires, J; Ferreira, Rui; Alves-Pereira, Isabel. http://hdl.handle.net/10174/10154.
  16. Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response. physicochemical properties are poorly known. In the case of metal nanoparticles, their dimension is often important, since their surface area increases as molecular size decreases, causing alterations in their magnetic and thermodynamic properties. Consequently, the influence they exert on life is an attractive topic of research in biochemical toxicology by the novelty of their behavior. Although. 2013. Capela-Pires, J; Ferreira, Rui; Alves-Pereira, Isabel. http://hdl.handle.net/10174/9937.
  17. How does heat-shock affect the influence of titanium dioxide nanoparticles in growth and antioxidant power of Saccharomyces cerevisiae BY4741. comunicação oral 2013-Capela-Pires J, Ferreira R, Alves-Pereira I (2013) How does heat-shock affect the influence of titanium dioxide nanoparticles in growth and antioxidant power of Saccharomyces cerevisiae BY4741?, BioMicroWorld2013, Madrid, Espanha. 2013. Capela-Pires, J..
  18. Nanoparticles of titanium dioxide modulate the response to temperature by key enzymes involved in pyruvate availability in cytosol and mitochondria of Saccharomyces cerevisiae BY4741. painel:2013-Capela-Pires J, Ferreira R, Alves-Pereira I (2013) Nanoparticles of titanium dioxide modulate the response to temperature by key enzymes involved in pyruvate availability in cytosol and mitochondria of Saccharomyces cerevisiae BY4741, CICTA 2013, Valencia, Espanha. 2013. Capela-Pires, J..
  19. Differencial growth inhibition Saccharomyces cerevisiae EU-ME3 and BY4741 by titanium dioxide nanoparticles in heat-shock conditions depends on glutathione reductase activity. painel:2012-Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2012) “Differencial growth inhibition Saccharomyces cerevisiae EU-ME3 and BY4741 by titanium dioxide nanoparticles in heat-shock conditions depends on glutathione reductase activity” concress IUBMB-FEBS, Sevilla.. 2012. Capela-Pires, J..
  20. Differential survival of Saccharomyces cerevisiae UE-ME3 and BY4741 strains to titanium dioxide nanoparticles depend on glutathione level increase and Catalase T induction. painel:2012-Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2012)“Differential survival of Saccharomyces cerevisiae UE-ME3 and BY4741 strains to titanium dioxide nanoparticles depend on glutathione level increase and Catalase T induction.”ESCPB, Bilbao, Espanha.. 2012. Capela-Pires, J..
  21. Proliferação de Saccharomyces cerevisiae na presença de metais de transição. Os resultados mostram que em células crescidas na presença de nanopartículas de titânio ou de pentóxido de vanádio ocorreu um decréscimo significativo de unidades formadoras de colónias, bem como, da actividade específica fosfatase alcalina. Contudo, S. cerevisiae crescidas na presença de pentóxido de vanádio, um pró-oxidante, e sumo de maçã golden mostraram uma reversão significativa da citototox. 2011. Agostinho, J; Capela-Pires, J; Alves-Pereira, I; Ferreira, Rui. http://www.box.com/shared/yx9u9xamgb.
  22. Influence of temperature on Saccharomyces cerevisiae UE-ME3 response to titanium dioxide nanoparticles. Titanium dioxide is a polymorphic material which can be found in nature in three mineral phases: rutile, anatase and brookite, the most unstable and of less interest. The form of NP-rutile TiO2 (<100 nm) is described as one of the most toxic compound. While living organisms have been exposed with nanoparticles from millions of years ago and may be adapted to low levels of these materials, the incr. 2011. Capela-Pires, JM; Alves-Pereira, I; Ferreira, Rui. http://www.formatex.info/biomicroworld2011/acceptedabstracts.php.
  23. eat shock decrease Saccharomyces cerevisiae UE-ME3 survival exposed to nanoparticles of titanium dioxide. 2011-Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2011) Heat shock decrease Saccharomyces cerevisiae UE-ME3 survival exposed to nanoparticles of titanium dioxide, EUROTOX 2011- 47th Congress of the European Societies of Toxicology, Paris, França. 2011. Capela-Pires, J..
  24. Glucose-6-phosphate dehydrogenase of Saccharomyces cerevisiae decreased in presence of titanium dioxide nanoparticles after heat-shock treatment,. painel: 2011- Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2011) Glucose-6-phosphate dehydrogenase of Saccharomyces cerevisiae decreased in presence of titanium dioxide nanoparticles after heat-shock treatment, 36th FEBS Congress, Turim, Itália. 2011. Capela-Pires, J..
  25. Influence of temperature on Saccharomyces cerevisiae UE-ME3 response to titanium dioxide nanoparticles. painel: 2011- Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2011) Influence of temperature on Saccharomyces cerevisiae UE-ME3 response to titanium dioxide nanoparticles", IV International Conference on Environmental, Industrial and Applied Microbiology- Biomicroworld 2011, Torremolinos, Espanha.. 2011. Capela-Pires, J..
  26. NP-TiO2 - strong oxidant able to induce catalase T and cause cell death of Saccharomyces cerevisiae UE-ME3. painel 2010- Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2010) NP-TiO2 - strong oxidant able to induce catalase T and cause cell death of Saccharomyces cerevisiae UE-ME3”, SETAC Europe 20th Annual Meeting, Sevilha, Espanha. 2010. Capela-Pires, J..
  27. proximações experimentais ao stress e regulação metabólica. painel: 2010- Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2010) Aproximações experimentais ao stress e regulação metabólica, Jornadas 2010 do Departamento de Química, Universidade de Évora, Évora, Portugal. 2010. Capela-Pires, J..
  28. TiO2-NP increase triacylglycerols contents, lipid peroxidation and glutathione conjugates metabolism of Saccharomyces cerevisiae UE-ME3. painel:2009- Capela-Pires, Joana; Alves-Pereira, Isabel e Ferreira Rui (2009) TiO2-NP increase triacylglycerols contents, lipid peroxidation and glutathione conjugates metabolism of Saccharomyces cerevisiae UE-ME3, Microbiotec 2009, Vilamoura, Portugal. 2009. Capela-Pires, J..
Activities

Course / Discipline taught

Academic session Degree Subject (Type) Institution / Organization
2012 - 2012 2012- Colaborador Programa ciência nas férias no âmbito da ocupação científica de jovens nas férias-Ciência Viva 2012 (Ocupação Científica de Jovens nas Férias-POCTI Program/ICAAM) estágio 1446 – “A Bioquímica revela segredos da qualidade dos alimentos de origem animal?” ICAAM, Universidade de Évora, Évora (Ensino secundário) Universidade de Évora Centro de Investigação em Ciências e Tecnologias da Saúde, Portugal

Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal
2012 - 2012 2012- Colaborador Semana da ciência e tecnologia Divulgação científica. Atividades de bioquímica: “Separação de uma mistura de pigmentos por cromatografia em coluna” e “Quantificação e determinação do grau de pureza do DNA”- Organização da associação académica da Universidade de Évora, departamento de química, laboratório de bioquímica analítica, Universidade de Évora, Évora. Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal
2011 - 2011 2011- Colaborador Programa ciência nas férias no âmbito da ocupação científica de jovens nas férias-Ciência Viva 2011 (Ocupação Científica de Jovens nas Férias-POCTI Program/ICAAM) estágio 1446 – “A Bioquímica revela segredos da qualidade dos alimentos de origem animal?” (alunos, 10º,11º e 12º ano)- ICAAM, Universidade de Évora, Évora (Ensino secundário) Universidade de Évora Centro de Investigação em Ciências e Tecnologias da Saúde, Portugal

Universidade de Évora Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Portugal