Sarmento J. Mazivila was born in Mozambique, on the 25th of September 1985. After finishing high school in Maxixe his hometown, he moved to Maputo the Mozambican capital for his undergraduate studies and graduated in Chemistry Teaching with qualifications in Analytical Chemistry and Classical Univariate Calibration at Department of Chemistry, Pedagogical University of Maputo in 2010. He then moved to Brazil, where completed his M. Sc. degree with qualifications in Chemometrics in Analytical Chemistry and Data Modelling at Institute of Chemistry, Federal University of Uberlândia in 2015. He subsequently moved to Portugal, where received his PhD degree in Analytical Chemistry (Doctoral Program in Sustainable Chemistry), specializing in Chemometric Data Modelling focused on Process Analytical Technology (PAT) concepts (PhD thesis in its third chapter https://hdl.handle.net/10216/127804) as a natural expansion of Process Analytical Chemistry (PAC) or Process Analytics & Control (PAC) at Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto in 2020. During his PhD, he had an exchange period at Department of Analytical Chemistry, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Argentina for three months, doing his PhD mobility under the guidance of a top leading chemometrician, Full Professor Alejandro Cesar Olivieri. In early 2021, PhD Mazivila become a Portuguese Citizen (European Citizen) through naturalization after he had been living in Portugal for 5 years. PhD Mazivila has authored 1 book chapter and 21 (18 as first-author) original research articles and tutorial/review papers in highly ranked international peer-reviewed Journals, with an accumulated H-index of 12. He has been serving as a Reviewer of over 40 international journals, including Analytica Chimica Acta, Analytical Chemistry, Chemometrics and Intelligent Laboratory Systems, Analyst, Talanta, Fuel, Microchemical Journal, Analytical Methods, Vibrational Spectroscopy, as listed in Peer review summary available online at: https://www.webofscience.com/wos/author/record/2104734. His scientific background is in Chemometrics in Analytical Chemistry and Data Modelling. He also has experience in: a) Experimental Design and Multiple Response Optimization using Design-Expert software; b) Discrimination task (to identify the origin of products) relied on conventional hard PLS-DA model; c) Classification task (to authenticate products, like adulteration detection) based on the recently developed soft-modeling in the PLS-DA model as multi-class classification and DD-SIMCA as one-class classification; d) Univariate and first-order multivariate calibrations for linear data (PLS) and non-linear data (ANN/RBF, SVM); e) Multi-way calibration strategies based on advanced chemometric models (MCR-ALS and PARAFAC). After completing his doctoral studies, he joined the LAQV & REQUIMTE - the Portuguese Research Centre for Sustainable Chemistry as a Chemometrician Post-doctoral Scientist, working on two advanced research projects, namely: i) real-time monitoring with focus on PAC and PAT; ii) multi-way data analysis applied to excitation-emission fluorescence matrices acquired from semiconductor quantum dots (QDs) -based sensing nanoplatforms. More recently, he has left the Division 1.4, Process Analytical Technology at BAM Federal Institute for Materials Research and Testing in Berlin, Germany as a Chemometrician/PAT Post-doctoral Fellow. During his time there, he adapted a quality-by-design (QbD) approach through continuous process verification in integrated unit operations that significantly benefits real-time release testing at Lab scale operating in a batch mode and integrated continuous mode, applying advanced chemometric analysis of process data acquired by in- and on-line cutting-edge sensing probes for probing the effect of critical process parameters on monitored intermediate critical attributes.

Personal identification

Full name
Sarmento Júnior Mazivila

Citation names

  • Mazivila, Sarmento
  • Mazivila, Sarmento J.

Author identifiers

Ciência ID

Email addresses

  • sarmento.mazivila@fc.up.pt (Professional)
  • mazivilasarmentojunior@yahoo.com.br (Personal)


Knowledge fields

  • Exact Sciences - Chemical Sciences - Analytical Chemistry
Degree Classification
2016/02/10 - 2020/06/22
Química Sustentável (Doutoramento)
Major in Quimiometria em Química Analítica
Universidade do Porto Faculdade de Ciências, Portugal
"Chemometrics coupled to vibrational spectroscopy and HPLC-DAD for the analysis of medicinal drugs and real-time monitoring of pharmaceutical cocrystallization/salification process" (THESIS/DISSERTATION)
2013/04/22 - 2015/01/16
Química (Master)
Major in Quimiometria em Química Analítica
Universidade Federal de Uberlândia Instituto de Química, Brazil
"Controle de Qualidade de Biodieseis de Soja e Pinhão Manso usando Espectroscopia no Infravermelho Médio e Análise Discriminante por Quadrados Mínimos Parciais" (THESIS/DISSERTATION)
2006/02/22 - 2010/12/07
Bacharelato e Licenciatura em Ensino de Química (Bachelor (1st cycle))
Major in Química Educacional
Universidade Pedagógica de Maputo, Mozambique
"Avaliação da Turbidez das Aguas do Rio Malauze usando Espectrofotometria de Absorção Molecular UV-Visível" (THESIS/DISSERTATION)


Book chapter
  1. Sarmento J. Mazivila; José X. Soares; João L. M. Santos. "Chapter 14 - Multiway data analysis applied to excitation–emission fluorescence matrices acquired from semiconductor/carbon quantum dots-based sensing nanoplatforms". India, 2024.
Journal article
  1. "Outside Front Cover". Analytica Chimica Acta 1211 (2022): 339947-339947. http://dx.doi.org/10.1016/s0003-2670(22)00518-9.
  2. Sarmento J. Mazivila; João L.M. Santos. "A review on multivariate curve resolution applied to spectroscopic and chromatographic data acquired during the real-time monitoring of evolving multi-component processes: From process analytical chemistry (PAC) to process analytical technology (PAT)". TrAC Trends in Analytical Chemistry (2022): https://doi.org/10.1016/j.trac.2022.116698.
  3. Sarmento J. Mazivila; José X. Soares; João L.M. Santos. "A tutorial on multi-way data processing of excitation-emission fluorescence matrices acquired from semiconductor quantum dots sensing platforms". Analytica Chimica Acta (2021): 339216-339216. https://doi.org/10.1016/j.aca.2021.339216.
  4. "Three-way calibration using PARAFAC and MCR-ALS with previous synchronization of second-order chromatographic data through a new functional alignment of pure vectors for the quantification in the presence of retention time shifts in peak position and shape". Analytica Chimica Acta (2020): https://doi.org/10.1016/j.aca.2020.12.033.
  5. "Detection of illegal additives in Brazilian S-10/common diesel B7/5 and quantification of Jatropha biodiesel blended with diesel according to EU 2015/1513 by MIR spectroscopy with DD-SIMCA and MCR-ALS under correlation constraint". Fuel (2020): https://doi.org/10.1016/j.fuel.2020.119159.
  6. "Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS". Analytical Methods (2020):
  7. "Dual-emission CdTe/AgInS2 photoluminescence probe coupled to neural network data processing for the simultaneous determination of folic acid and iron (II)". Analytica Chimica Acta (2020):
  8. "Detection of melamine and sucrose as adulterants in milk powder using near-infrared spectroscopy with DD-SIMCA as one-class classifier and MCR-ALS as a means to provide pure profiles of milk and of both adulterants with forensic evidence: A short communication". Talanta (2020): https://doi.org/10.1016/j.talanta.2020.120937.
  9. "At-line monitoring of salification process of the antiretroviral lamivudine-saccharinate salt using FT-MIR spectroscopy with multivariate curve resolution". Vibrational Spectroscopy (2019):
  10. "Simultaneous Determination of Medicinal Drugs with Overlapping Profiles Contained in Low Chromatographic Resolution Data using HPLC-DAD and Multivariate Curve Resolution". Current Analytical Chemistry (2019):
  11. "A review on advanced oxidation processes: From classical to new perspectives coupled to two- and multi-way calibration strategies to monitor degradation of contaminants in environmental samples". Trends in Environmental Analytical Chemistry (2019):
  12. "At-line green synthesis monitoring of new pharmaceutical co-crystals lamivudine:theophylline polymorph I and II, quantification of polymorph I among its APIs using FT-IR spectroscopy and MCR-ALS". Journal of Pharmaceutical and Biomedical Analysis (2019): https://doi.org/10.1016/j.jpba.2019.03.014.
  13. "Chemometrics coupled to vibrational spectroscopy and spectroscopic imaging for the analysis of solid-phase pharmaceutical products: A brief review on non-destructive analytical methods". TrAC Trends in Analytical Chemistry (2018):
  14. "Rapid Discrimination Between Authentic and Adulterated Andiroba Oil Using FTIR-HATR Spectroscopy and Random Forest". Food Analytical Methods (2018):
  15. "MVC3_GUI: A MATLAB graphical user interface for third-order multivariate calibration. An upgrade including new multi-way models". Chemometrics and Intelligent Laboratory Systems (2017): https://doi.org/10.1016/j.chemolab.2017.12.012.
  16. "Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review". Talanta (2017): https://doi.org/10.1016/j.talanta.2017.12.057.
  17. "Determination of residual automotive lubricant oil and residual solvent used in a dry wash as adulterants in Brazilian S-10 diesel (B7) using mid-infrared spectroscopy data and chemometric methods". Analytical Methods (2016): http://dx.doi.org/10.1039/C6AY01330A.
  18. "Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics". Food Chemistry (2016): http://dx.doi.org/10.1016/j.foodchem.2016.04.051.
  19. "Quantification of adulterations in extra virgin flaxseed oil using MIR and PLS". Food Chemistry (2015): http://dx.doi.org/10.1016/j.foodchem.2015.02.081.
  20. "Fast Classification of Different Oils and Routes Used in Biodiesel Production Using Mid Infrared Spectroscopy and PLS2-DA". Journal of the Brazilian Chemical Society (2015): http://dx.doi.org/10.5935/0103-5053.20150020.
  21. "Fast Detection of Adulterants/Contaminants in Biodiesel/Diesel Blend (B5) Employing Mid-Infrared Spectroscopy and PLS-DA". Energy & Fuels (2014): http://dx.doi.org/10.1021/ef502122w.
  22. "Discrimination of the type of biodiesel/diesel blend (B5) using mid-infrared spectroscopy and PLS-DA". Fuel (2014): http://dx.doi.org/10.1016/j.fuel.2014.11.014.
Thesis / Dissertation
  1. "Chemometrics coupled to vibrational spectroscopy and HPLC-DAD for the analysis of medicinal drugs and real-time monitoring of pharmaceutical cocrystallization/salification process". 2020. https://hdl.handle.net/10216/127804.